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Abstract
The microcirculation is a complex and integrated system, transporting oxygen and nutrients to the cells. The key component
of this system is the endothelium, contributing to the local balance between pro and anti-inflammatory mediators,
hemostatic balance, as well as vascular permeability and cell proliferation. A constant shear stress maintains vascular
endothelium homeostasis while perturbed shear stress leads to changes in secretion of vasodilator and vasoconstrictor
agents. Increased oxidative stress is a major pathogenetic mechanism of endothelial dysfunction by decreasing NO
bioavailability, promoting inflammation and participating in activation of intracellular signals cascade, so influencing ion
channels activation, signal transduction pathways, cytoskeleton remodelling, intercellular communication and ultimately
gene expression. Targeting the microvascular inflammation and oxidative stress is a fascinating approach for novel therapies
in order to decrease morbidity and mortality of chronic and acute diseases.
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Introduction

The microcirculation is a complex system delivering

oxygen in order to meet the cellular oxygen demand.

The key component of this system is the endothe-

lium, mediating, under physiologic conditions, se-

veral functions to ensure a normal homeostasis.

A dysfunction of normally protective endothelium

may contribute to initiation and progression of

several diseases, including cardiovascular damage

associated to hypercholesterolemia, hypertension,

diabetes, ischemia/reperfusion injury and sepsis

[1�6]. Increased oxidative stress, resulting from an

exceeding production of reactive oxygen species

(ROS) and other oxidants, plays an important role

in determining microvascular injury [7].

The goal of this review is to highlight the complex

interactions between microcirculation and oxidative

stress in some acute and chronic diseases.

Microcirculation

The microcirculation is a hidden organ consisting of

the smallest blood vessels, including resistance arte-

rioles, capillaries and venules. It is a complex and

integrated system, transporting oxygen and nutrients

to the cells. The endothelial cells, forming the inner

lining of all blood vessels, represent the main cell

types of the microcirculation.

Endothelial physiology

The endothelium, an active biologic organ, contri-

butes to the local balance between pro- and anti-

inflammatory mediators, hemostatic balance, as well

as vascular permeability and cell proliferation [8].

Normal endothelial cells show vasodilator, anti-coa-

gulant and anti-adhesive properties.

The endothelium mediates the vasomotor tone of

the microcirculation by release of vasodilators (nitric

oxide, prostacyclin, bradykinin and endothelium-

derived hyperpolarizing factor) and vasoconstrictors

(endothelin-1, angiotensin II and thromboxane) fac-

tors. Nitric oxide (NO) plays a predominant role in

vasodilation [9]. NO is synthesized from the aminoa-

cid L-arginine in a reaction catalysed by a family of

nitric oxide synthases (NOSs), requiring tetrahydro-

biopterin (BH4) as cofactor, and leads to relaxation

of smooth muscle cells by increasing intracellular

cyclic guanosine-monophosphate levels.

The small physiologic amounts of NO generated by

the constitutive NOSs (neuronal NOS, nNOS, NOS

I and endothelial NOS, eNOS, NOS III) are respon-

sible for most of its beneficial effects (vasodilation,

inhibition of platelet aggregation and leukocyte adhe-

sion to the endothelium). A constant production of

NO contributes to regulation of arterial systemic

pressure by maintaining a continuous vasodilator

tone as shown by hypertensive phenotype in eNOS

knockout mouse [10].

The inducible NOS (iNOS, NOS II), activated by

inflammatory stimuli, produces larger and more

persistent concentration of NO, leading to most of

its detrimental actions: hypotension, negative inotro-

pic effect, pro-oxidant properties, apoptosis, media-

tion of the effects of cytokines, cytotoxic innate

immunity [11].

The most important physiologic factor for NO

synthesis is shear stress, that is a tangential distortion

of the endothelial cells produced by blood flow [12].

NO is also released in response to pharmacological

agonists such as acetylcholine.

The counterpart of NO is endothelin-1 (ET-1),

which causes vasoconstriction, smooth muscle cell

proliferation by activation of endothelin-A receptor

(ET-A) and release of inflammatory mediators such

as interleukin-1 (IL-1), IL-6 and IL-8.

A constant shear stress maintains vascular endothe-

lium homeostasis, preventing cell apoptosis/proli-

feration, coagulation, leukocyte adhesion and

atherogenesis [13,14], while perturbed shear stress

leads to changes in secretion of vasoactive factors as

well as in gene expression by activating different

signal transduction pathways [15]. For example,

acute loss of shear stress, as observed in ischemia,

results in membrane depolarization of lung micro-

vascular endothelial cells, secondary to adenosine

triphosphate sensitive K� (KATP) channels closure;

this response is followed by activation of endothelial

nicotinamide adenine dinucleotide phosphate

(NADPH) oxidase, ROS production, activation

of transcriptor factors such as nuclear factor-kB

(NF-kB) and activator protein-1 (AP-1) and increase

of intracellular Ca2�, with enhanced eNOS activity

and NO release (Figure 1). Ultimately, the endothe-

lial cells try to restore the blood flow by promoting

angiogenesis and vasodilation [15,16]. In pulmonary

endothelium, calcium influx, via voltage-gated

T-Type calcium channels, promotes secretion of von

Willebrand factor and expression of P-selectin, so

influencing hemostasis and inflammation [17].

The tone of microcirculation is tightly coupled to

parenchymal oxygen consumption, resulting in vaso-

dilation or vasoconstriction according to the actual

interstitial Po2 concentration [18]. Endothelial cells

might act as oxygen sensor and, when exposed to

hypoxia, mediate vasodilation by increased produc-

tion of NO, prostacyclin (PGI2) or by activation of

KATP channels in smooth muscle cells with subse-

quent hyperpolarization and reduced calcium inflow

[19,20]. Conversely, hypoxic pulmonary vasocon-

striction (HPV) is a feature of pulmonary circulation

in response to alveolar hypoxia in order to preserve

gas exchange. ROS may participate in HPV by

regulating potassium and/or calcium channels

[21,22].
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Endothelial dysfunction

An impairment of endothelial-mediated vasodilation

characterizes endothelial dysfunction; it is the result

of reduced NO production, mainly due to its

inactivation by ROS and increased release of vaso-

constrictor factors [23�25]. L-arginine and tetrahy-

drobiopterin deficiencies cause NOS dysfunction,

affecting NO production and increasing the concen-

tration of oxidants such as superoxide and hydrogen

peroxide, a phenomenon described as ‘NOS uncou-

pling’ [26,27].

Endothelial dysfunction includes a pro-inflamma-

tory, pro-coagulant and proliferative condition, called

endothelial activation. Different signals can activate

the endothelial cells: cell-to-cell interactions, soluble

mediators and hemodynamic forces [28]. Haematic

hyperviscosity and reduced erythrocyte deformability

with worse hemorheological parameters can increase

the risk of ischemia [29].

Dysfunction of the normally protective endothe-

lium is a key component in several diseases, including

atherosclerosis, hypertension, diabetes, ischemia re-

perfusion injury and sepsis [30�33]. Specialized

microvasculature is present in the central nervous

system where endothelial cells and astrocytes partici-

pate in the blood�brain barrier. There is increasing

interest in elucidating the relation between the

integrins and matrix adhesion receptors and extra-

cellular matrix in the regulation of cerebral vascular

permeability as novel therapeutic target in conditions

such as cerebral ischemia and multiple sclerosis [34].

The identification of biological markers of en-

dothelial dysfunction could help for an early diagnosis

and new effective treatment. Some of the most

studied indexes are citrulline/arginine ratio, an index

of NOS activity, asymmetric dimethylarginine

(ADMA), a potent endogenous inhibitor of NO,

synthesis endothelial progenitor cells, myeloperoxi-

dase (MPO) and C-reactive protein (CRP) [35�41].

COX

O2

–.

ONOO–

TXA2
PGH2

Ca2+

NAD(P)
Hoxidase

KATP  Channels  closure

Ca2+ channels opening

Membrane depolarization

Vasoconstriction
Membrane oxidation
Leukocyte adhesion
Pro-coagulation
Cell-proliferation

Tissue Ischemia
Reduced  shear stress
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oxidative stress
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Figure 1. Role of increased oxidative stress and perturbed shear stress on endothelial dysfunction. Main source of ROS are NADPH

oxidase, xanthine oxidase and cyclooxygenase (COX). The superoxide anion (O2� �) scavenges NO to form peroxynitrite (ONOO). Acute

loss of shear stress can result in potassium-adenosine triphosphate sensitive K� (KATP) channels closure with membrane depolarization,

leading on one side to activation of endothelial NADPH oxidase, ROS generation and on the other side to increase of intracellular Ca2� by

activation of voltage dependent Ca2� channels with activation of endothelial NO synthase and NO production in the attempt to restore

blood flow.
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Oxidative stress

Oxidative stress describes an imbalance in production

of free radical species and their effective removal by

antioxidants and scavenger enzymes [42]. ROS are

normally produced during cellular respiration and

inflammatory defense mechanisms [43]. There are

several scavenger systems including enzymes such as

superoxide dismutase (SOD), catalase (CAT) and

glutathione peroxidase, a selenium dependent en-

zyme (GSH-Px), and non-enzymatic antioxidants

such as vitamin E, vitamin C, beta-carotene and

hemebinding proteins [44].

ROS deplete the cellular levels of NO, increase the

expression of adhesion molecules (P-selectin), lipid

inflammatory mediators such as platelet-activating

factor (PAF), leukotriene B4 (LTB4) and cytokines

such as IL-8 [7,25], so contributing to endothelial

dysfunction. The superoxide anion (O2
� �) scavenges

NO to form peroxynitrite, triggering different proin-

flammatory signals and inhibiting endothelial repair

and preventing angiogenesis [45,46].

Exogenous sources of ROS are phagocytes as well

as circulating enzymes such as xanthine oxidase.

Endothelial cells can also generate ROS in response

to tumour necrosis factor alpha (TNF-a), IL-1b,

platelet-derived growth factor. Endogenous sources

of ROS, such as cyclo-oxygenase and NADPH

oxidase, might lead to more subtle effects other

than cell injury [13]. In fact, ROS might act as

second messenger and have a significant effect on the

vascular cells signal transduction pathways involving

mitogen-activated protein kinase (MAPK), extracel-

lular signal-regulated kinase (ERK), Jun N-terminal

kinase (JNK) as well NF-kB, activator protein-1

activation (AP-1), so influencing gene expression,

cytoskeleton organization, cross-talk communication

and ion channels activation.

ROS can mediate the endothelial response to

mechanical stress, converting the cellular mechanical

distortion into biological signals, a process called

mechanotransduction [13,15]. NADPH oxidase

might represent a specific targeting of signalling

modulation and inhibition [47] (Figure 1).

In the pulmonary microcirculation, ROS can

induce contraction of pericytes, that surround the

endothelial cells, resulting in disruption of the micro-

vasculature barrier and increased permeability [48].

In pulmonary endothelial cells, increased cytosolic

calcium level, regulated by T-Type calcium channel

and recent identified transient receptor potential

channels (TRP) activated by inflammatory media-

tors, triggers cytoskeleton remodelling responsible for

endothelial cell barrier disruption. The inhibition of

these channels represents a novel anti-inflammatory

strategy [17,49�51].

Ageing

Cell senescence is associated to endothelial dysfunc-

tion [52]. Senescent vascular cells show an impairment

of endothelium-dependent vasodilation secondary to

reduced eNOS activity, NO production and increased

ROS production. These cells present a pro-coagulant

phenotype, due to increased production of thrombo-

xane A2 (TXA2), ET-1 and plasminogen activator

inhibitor-1 (PAI-1). Ageing is also associated with

higher levels of circulatory inflammatory mediators

such as TNF-a, advanced glycation products (AGEs),

matrix metalloproteinases (MMPs) and inflammatory

cells as mast cells that disrupt the integrity of the

microvascular endothelium and, ultimately, reduce

blood flow [52�56]. All these changes can exacerbate

age-related diseases like hypertension, atherosclerosis

and diabetes mellitus.

Targeting senescence mechanisms might represent

a new therapeutic strategy. Physical activity and

caloric restriction can improve age-related modifica-

tions to endothelium and reduce the risk of death

from cardiovascular diseases in the elderly [57�59].

Cardiovascualr damage and

hypercholesterolemia

Hypercholesterolemia is a major risk factor for

coronary atherosclerosis and is associated to endothe-

lial dysfunction [60,61]. Increased oxidative stress

can contribute to myocardial vascular dysfunction

in hypercholesterolemia [62]. The most important

effects of ROS include oxidation of low-density

lipoprotein (LDL), arteriolar scavenging of the en-

dothelium-derived NO with reduced vasorelaxation

and blood cells�venular endothelial cells interaction.

Oxidative modification of LDL may promote

endothelial injury with progression of the fatty lesions

[63]. Oxidized LDLs antagonize the endothelial

production of NO, reducing the expression of

eNOS [64,65], decreasing the uptake of L-arginine

and enhancing the level of asymmetric dimethylargi-

nine (ADMA) [66]. Oxidative stress, by activation of

NF-kB, can influence the expression of IL-1, vascular

cell adhesion molecule-1 (VCAM-1), ICAM-1,

pro-angiogenic factors such as ET-1, MMP-2 and

MMP-9, thus contributing to vasa vasorum and

atherosclerotic plaque neovascularization [67�69].

Angiogenesis can contribute to progression as well

as to vulnerability of atherosclerotic lesions [70]. The

vasodilation in response to substances like acetylcho-

line (Ach) is diminished, as a result of increased ROS

and decreased bioavailability of NO in arterioles

[71,72].

In post-capillary venules, oxidative stress promotes

adhesion molecules expression with platelet and

leukocyte recruitment, a response attenuated by NO
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supplementation [73,74]. Platelets play a complex

role, linking thrombosis, inflammation and immune

response [75]. Platelet activation produces peroxyni-

trite, which increases thromboxane levels and inhibits

the mechanisms of endothelial repair. The interaction

of platelets and endothelial cells promotes the release

of IL-8, monocyte chemotactic protein-1 (MCP-1)

and ultimately monocyte activation [35].

MPO, released by neutrophils and monocytes, is a

powerful generator of oxidizing, nitrating and chlo-

rinating species with proinflammatory and proathero-

genic properties. It can oxidize LDL cholesterol,

activate metalloproteinases and decrease NO avai-

lability. MPO is involved in destabilization and

rupture of the atherosclerotic plaque and associated

to adverse outcome in patients with acute coronary

syndrome [39,40].

Cytokines, such as interferon-g (IFN-g), TNF-a,

IL-1, released by activated leukocytes, increase oxi-

dative stress in venules [76,77] and arteriolar dys-

function in hypercholesterolemia [78].

Endothelial dysfunction induced by oxidized LDL

can be reversed by L-arginine [79,80], pomegranate

juice containing polyphenolic antioxidants [81,82],

flavanol-rich cocoa [83,84], antioxidants like vitamins

C and E [80,85,86], inhibition of the renin angio-

tensin system [87] and cholesterol lowering statins

[88�90]. Metabolic treatment with antioxidant and

L-arginine associated to moderate physical exercise in

experimental models of hypercholesterolemia showed

protective effects, with reduction of atherosclerotic

lesion formation, plaque rupture and prolonged

survival [91,92]. Interestingly, chronic exercise eli-

cited an increase in production of NOS expression

and improved scavenger activities [93].

Notably, the beneficial effects of chronic antio-

xidant supplementation in hypercholesterolemia are

not confirmed under normal conditions, where it can

impair myocardial perfusion and coronary endothelial

function by an increased level of oxidative stress in

the arterial wall [94]. Therefore, high-dose antio-

xidant vitamins in healthy subjects with presumed

low oxidative stress might be detrimental.

A new promising therapeutic approach consists of

targeting the processes involved in angiogenesis.

Statins decrease vascular wall oxidative stress by

eNOS activation with increased NO bioavailability

and a direct antioxidant activity [88,89]. Moreover,

they reduce angiogenesis and vasa vasorum neovas-

cularization [90].

The blockade of the endothelin system, which is

upregulated in hypercholesterolemia, showed protec-

tive effects on renal microvasculature [95].

Over the past few years, CRP has been investigated

not only as an inflammatory marker but also as a

possible mediator of atherosclerosis [96]. In particu-

lar, CRP can influence the microcirculation by

eNOS downregulation [97], increasing ET-1 [98]

and upregulating angiotensin type 1 receptor in

smooth muscle cells [99]. CRP also promotes ROS

production and upregulation of chemokines and

endothelial cell adhesion molecules, so contributing

to a proinflammatory and proatherosclerotic environ-

ment [100,101]. CRP could represent not only a

diagnostic marker during primary prevention of car-

diovascular diseases [102] but also a new therapeutic

target in cardiovascular protection [103,104].

Cardiovascular damage and hypertension

Hypertension is a significant cardiovascular risk

factor, associated to endothelial dysfunction and

oxidative stress. An increased production of ROS

and a reduced level of SOD are reported in both

animal [105�109] and human studies [110]. Oxida-

tive stress participates in increasing systemic arterial

pressure, reducing NO availability and vasodilation

[111,112]. NADPH oxidase and xanthine oxidase are

the main sources of ROS in hypertension [113,114].

Oxidative stress is involved in remodelling of

myocardial microvascular architecture and subse-

quent development of left ventricular hypertrophy

[115,116]. Hypertension, combined to hypercholes-

terolemia, accentuates oxidative stress, showing a

synergistic deleterious effect on myocardial micro-

vascular dysfunction [117,118].

Antioxidant supplementation with high dose of

vitamins C and E can reduce endothelial dysfunction

and improve myocardial perfusion in early hyperten-

sion [119]. Simvastatin showed a protective effect,

preventing myocardial microvascular remodelling and

hypertrophy in experimental renovascular hyperten-

sion [120].

Cardiovascular damage and diabetes

Diabetes mellitus is a major cardiovascular risk

factor, associated with increased morbidity and

mortality [121]. Endothelial dysfunction with im-

paired endothelium-dependent vasodilation has been

documented in type 1 [122] and type 2 diabetes

[123] as well as in the syndrome of insulin resistance

[124]; it also plays an important role in the develop-

ment of macro and microvascular disease [125].

Suggested cellular mechanisms of impaired endothe-

lium-dependent vasodilation include decreased

production of vasodilators (NO, prostacyclin, en-

dothelium-derived hyperpolarizing factor) and in-

creased release of vasoconstrictors (thromboxane,

ET-1) [4]. Disturbance in voltage-gated K� channel

function [126] and impaired vasodilation to hypoxia

can contribute to microvascular dysfunction [127]. A

defect of insulin action on phosphatidyl-inositol-

3-kinase (PI3-K) pathway that normally mediates

the vasodilator effect of insulin by increasing eNOS

1368 E. Crimi et al.
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gene expression and NO bioavailability can explain

the vascular dysfunction in insulin resistance

[128,129].

Hyperglycemia-induced oxidative stress plays a

central role in endothelial dysfunction [130,131].

Hyperglycemia, the hallmark of diabetes, increases

superoxide production by NADPH depletion with

glutathione regeneration impairment and activation

of vascular NADPH oxidase due to increased AGE

production and protein kinase C activation [131].

Other possible sources of ROS include uncoupled

eNOS, xanthine oxidase and mitochondria [4].

Hyperglycemia and oxidative stress, through in-

creased LDL oxidation, can accelerate the athero-

sclerotic disease in diabetic patients [132].

Antioxidants (N-acetylcysteine, vitamins E and C)

can restore endothelial function [133�135]. In an

experimental model of metabolic syndrome, charac-

terized by insulin resistance, pomegranate fruit ex-

tract, rich in polyphenolic antioxidants, reduced the

expression of oxidation-sensitive genes at the sites of

perturbed shear-stress and increased eNOS expres-

sion [136]. However, antioxidant therapy does not

reduce cardiovascular complications in diabetic pa-

tients [137].

ACE inhibitors can decrease NADH oxidase acti-

vity and free radicals by inhibition of angiotensin II

[125]. Statins improved endothelial dysfunction in

diabetes, independently of changes in cholesterol

levels [138,139].

Cardiovascular damage and ischemia/

repurfusion injury

Ischemia/reperfusion injury (I/R) defines the cellular

structural changes occurring after reperfusion of

ischemic tissue [5]. Endothelial cells exposed to the

deleterious effects of ischemia and reperfusion show

depletion of energy stores, altered ion distribution,

membrane depolarization, increased hypoxanthine

level, increased membrane fluidity, cellular swelling

and cytoskeleton derangement [140].

The components of the microcirculation including

arterioles, capillaries and venules manifest different

responses to I/R injury.

I/R results in severe dysfunction of the endothelium

in arterioles characterized by impaired endothelium-

dependent vasodilation and increased arterial resis-

tance. A reduction in NO release is responsible for

impaired arteriolar vasodilation [141�144]. The me-

chanisms responsible for this inhibition are still

unclear. Increased activity of arginase [145], enzyme

competing with NOS for the substrate L-arginine,

and depletion of BH4, cofactor of NOS [146], have

been described following I/R injury. A burst of

oxidant production at the onset of the reperfusion

can impair the NO-dependent vasodilation by direct

inhibition [147] and stimulating leukocyte adhesion

molecule, promoting leukocytes activation, chemo-

taxis and ultimately leading to further ROS produc-

tion. Interestingly, inhibition of arginase [145],

administration of BH4 [148] as well as gene defi-

ciency of leukocyte adhesion molecules (CD11/18, P

selectin, ICAM-1) [149] can restore and/or preserve

endothelium-dependent NO-mediated relaxation.

The microvascular dysfunction in capillaries in-

cludes increased fluid filtration with interstitial

edema and less perfused capillaries. Increased perme-

ability of the endothelium rather than elevated

intracapillary pressure is the main mechanism for

increased filtration [150]; it can be due to NO

inhibition [151] as well as to intercellular adhesion

disruption secondary to ROS production and energy

depletion. Decreased endothelium-dependent vasor-

elaxation, interstitial fluid accumulation, obstruction

and/or narrowing of the vessels by platelet-leukocyte

aggregation and leukocyte-endothelial cell adhesion

can lead to mechanical blood flow obstruction and

capillary malperfusion following the reperfusion of an

ischemic organ, known as ‘no reflow phenomenon’

[152]; it may be clinically evident as persistence

and/or worsening of organ dysfunction after the

reperfusion.

In the post-capillary venules, endothelium dysfunc-

tion is characterized by an intense inflammatory

response. ROS play a pivotal role in this response.

On reperfusion of ischemic tissues, ROS production

is enhanced by high levels of xanthine oxidase

converting the intracellular excess of hypoxanthine

as a result of ATP degradation [5]. ROS promote

activation of circulating leukocytes, platelets, with

generation of inflammatory mediators (PAF, LTB,

IL-8), cytokine and adhesion molecule expression,

resulting in neutrophil mediated tissue injury

[153,154]. Potential strategies to prevent I/R, inclu-

ding ischemic pre-conditioning, antioxidant, antileu-

kocyte and anticomplement therapy, did not provide

a definite and unequivocal benefit in the clinical

settings [140].

Cardiovascular damage and sepsis

Microvascular dysfunction participates in the patho-

genesis of sepsis. Pathogens, lipopolysaccharide as

well as inflammatory mediators can be responsible for

endothelial cell activation and dysfunction [155].

An increased heterogeneity in microvascular blood

flow has been described in various experimental

models of sepsis [156�159] and in patients with

septic shock, using polarized light microscopy

[160]. The early phases of sepsis are characterized

by reduced number of perfused capillaries, misdis-

tribution of oxygen delivery and subsequent tissue

hypoxia [161].
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Oxidative stress is the result of activation of

phagocytes, production of NO and ROS, release of

iron, copper ions, metalloproteins and contributes to

experimental microvascular dysfunction in sepsis.

ROS can directly disrupt endothelial cells and impair

cellular interaction, so promoting microvascular

thrombosis and organ dysfunction [162,163].

NO is an important factor for the integrity of

microvascular endothelium and blood flow [164].

Bacterial endotoxin or inflammatory cytokines in-

crease iNOS activity. The enhanced production of

NO contributes to vascular collapse and myocardial

dysfunction, mediating the depressant effects of

proinflammatory cytokines (TNF-a, IL-1b) [165�
168]. Endotoxin produced less hypotension in

iNOS deficient mice [169] and in mice treated with

a selective pharmacological inhibitor of iNOS [170].

The heterogeneous expression of iNOS in different

vascular beds can result in flow shunting [171]. NO

could have beneficial effects in sepsis related to

counteraction of the released vasoconstrictors sub-

stances, to inhibition of leukocyte rolling and adhe-

sion and to inhibition of NF-kB [172]. Interestingly,

myocardial over-expression of NOSIII showed a

protective effect against endotoxin-induced myocar-

dial dysfunction [173].

Conclusions

The endothelium represents a dynamic interface with

activation of different and highly integrated cellular

pathways in response to mechanical and metabolic

stimuli. An imbalance between ROS production and

NO availability leads to main changes in endothelial

function and ultimately to impaired microcirculatory

perfusion. Oxidative stress might play a more sophis-

ticated role in endothelial dysfunction other than

cellular damage. It can act as an important mediator

in the inflammatory cascade and participate in

mechanotransduction, transforming the mechanical

forces changes determined by perturbed shear stress

in biological signals.

Microcirculatory dysfunction is emerging as an

important factor in the pathogenesis of acute and

chronic diseases. Interestingly, senescence is also

associated to increased oxidative stress and endothe-

lial dysfunction, contributing to the exacerbation of

age-related cardiovascular disease.

Targeting the oxidant response by antioxidants and

modulating specific enzymes (e.g. NO synthases,

NADPH oxidase) represents a potential therapeutic

strategy.

Recent evidence indicates that treatment with

antioxidants and L-arginine combined to bone-mar-

row cells (BMC) transplantation can provide bene-

ficial effects beyond those achieved by BMC

transplantation alone in the healing process of the

injured cardiovascular system [174]. There is growing

interest on the protective effects of statins on the

endothelial dysfunction, beyond their lipid lowering

action. Healthy lifestyle, including regular physical

activity and balanced diet, is an easy practice to

reduce the endothelium age-related modifications.
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